Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4
نویسندگان
چکیده
Optical thermometry has been widely studied to achieve an inaccessible temperature measurement in submicron scale and it has been reported that the temperature sensitivity depends mainly on host types. In this work, we propose a new method to improve the optical temperature sensitivity of Yb3+-Er3+ co-doped CaWO4 phosphors by doping with Li+, Sr2+, and Mg2+ ions and by controlling excitation powers of 980 nm laser. It is found that the thermometric parameters such as upconversion emission intensity, intensity ratio of green-to-red emission, fluorescence color, emission intensity ratios of thermally coupled levels (2H11/2/4S3/2), and relative and absolute temperature sensitivity can be effectively controlled by doping with Li+, Sr2+, and Mg2+ ions in the Yb3+-Er3+ co-doped CaWO4 system. Moreover, the relative sensitivity SR and the absolute sensitivity SA are proved to be dependent on the pump power of 980 nm laser. The sensitivities of SR and SA in Yb3+-Er3+ co-doped CaWO4 increase about 31.5% and 12%, respectively, by doping with 1 mol% Sr2+.
منابع مشابه
Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Antimony Selenide Nanomaterials: Synthesis, Characterization, Electrical, Thermoelectrical and Optical Properties
Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Sb2Se3 nanomaterials were synthesized by a Co-reduction method in hydrothermal condition. Powder XRD patterns indicate that the LnxLn′xSb2-2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x= 0.00-0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). SEM and TEM images show that Co-doping of Lu3+/...
متن کاملLu3+/Yb3+ and Lu3+/Er3+ Co-doped Antimony Selenide Nanomaterials: Synthesis, Characterization, Electrical, Thermoelectrical and Optical Properties
Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Sb2Se3 nanomaterials were synthesized by a Co-reduction method in hydrothermal condition. Powder XRD patterns indicate that the LnxLn′xSb2-2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x= 0.00-0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). SEM and TEM images show that Co-doping of Lu3+/...
متن کاملA portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass
The determination of temperature is essential in many applications in the biomedical, technological, and industrial fields. Optical thermometry appears to be an excellent alternative for conventional electric temperature sensors because it is a non-contact method that offers a fast response, electromagnetic passivity, and high temperature sensitivity. In this paper, we propose an optical thermo...
متن کاملHigh-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites
Waveguide amplifiers have always been significant key components for optical communication. Unfortunately, the low concentration of rare earth ions doped in the host material and the inadequate optimization of the waveguide structure have been the common bottleneck limitations. Here, a novel material, NaYF4/NaLuF4: 20% Yb3+, 2% Er3+ nanoparticle-Polymeric Methyl Methacrylate covalent-linking na...
متن کاملLu3+/Yb3+ and Lu3+/Er3+ co-doped antimony selenide nanomaterials: synthesis, characterization, and electrical, thermoelectrical, and optical properties
Lu3+/Yb3+ and Lu3+/Er3+ co-doped Sb2Se3 nanomaterials were synthesized by co-reduction method in hydrothermal condition. Powder X-ray diffraction patterns indicate that the LnxLn'xSb2-2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x = 0.00 - 0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). Scanning electron microscopy and...
متن کامل